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1. Introduction 
When a contrast agent, such as Gd-DTPA, is introduced into the blood stream of a patient its 
transport through the vascular system, heart and lungs and eventual excretion via the kidneys is a 
well-established process [1]. At the level of our imaging voxel (for example, in the centre of a 
breast tumor) we can only speculate as to the precise nature of the contrast agent kinetics. We 
can, however, form a hypothesis. The tracer kinetic model helps us to formulate such a 
hypothesis, provides us with the opportunity to predict the behavior of the system and 
subsequently test our predictions [2]. With time, like most hypotheses, our models become more 
complex attempting to describe the system with greater realism. 
 
In the following syllabus contribution I will briefly summarize the derivation of several 
important tracer kinetic models used in both MRI research and clinical practice, highlight the 
latest developments in the field and identify some important limitations of the techniques and 
sources of error inherent in their use. 

2. Building blocks 
The indicator-dilution technique developed from physiological studies dating back to the 19th 
century and the mathematical foundations of today’s models were laid in the late 1940s and early 
1950s [3-5]. In the nuclear medicine community the field has matured and practitioners have 
employed sophisticated models in their analyses [6, 7].  
 
Common to many of these approaches is a set of model building blocks (Fig. 1). For the 
purposes of this discussion the tissue may be said to be composed of plasma (vascular) and 
interstitial spaces separated by a semi-permeable endothelial cell layer (the capillary wall). Their 
fractional volumes, in ml/ml of tissue, are defined as vp and ve, respectively. A third 
compartment, mainly intra-cellular space but also composed of membranes, fibrous tissues and 
so on, is present but usually excludes contrast agents. A whole field of dynamic susceptibility 
contrast MRI has developed to measure tracer kinetics in the brain where the blood-brain barrier 
prevents transport of Gd-DTPA into the interstitium [8]. However, this discussion is limited to 
those models that incorporate capillary-tissue exchange and we may consider two principal 
exchange parameters: plasma flow, Fp measured in ml/min/ml tissue and capillary permeability-
surface area product, PS measured in ml/min/ml tissue. A conversion to the common units of 
ml/min/g is achieved by the inclusion of the tissue density, g/ml [9] while a measure of whole 
blood volume and flow is obtained by multiplication by 1/(1 – hematocrit). 
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Fig. 1 – Tracer transport and
exchange in tumors may be
described using a set of basic
building blocks. Flow (plasma
flow, F ); Shunt (flow where there
is no exchange of nutrients with
the tissue); Perfusion (nutritive 
flow); PS (permeability-surface
area product); E (extracte

p

d 
fraction); VD* (volume of
distribution – not all of the tissue
volume is ‘available’ to the
extracted tracer; in the case of Gd-
DTPA this represent the interstitial
volume, V ). Modified from ref.
[10].

e

 
The kinetic modeling of contrast agent distribution has a basis in the simple rate equation 
describing diffusive flux across a permeable membrane [11, 12]. This is determined by the 
difference in concentration between two compartments that are separated by the membrane and 
the membranes permeability. For the case of transport across the capillary wall the flux is equal 
to PS(C  – C ), where P is the capillary permeability, S is the total effective surface area of the 
capillary wall and C  and C  are the concentrations of contrast agent in the plasma and interstitial 
spaces, respectively. In reality the concentrations of contrast agent in these compartments are not 
stable, the plasma concentration (and therefore capillary-tissue exchange) is dependent upon 
flow. The extraction fraction, E, is the relative difference between arterial and venous 
concentrations of contrast agent and is defined as the fractional reduction of contrast agent in the 
plasma during its passage through the tissue [11]. E is related to PS and F  through the relation, E 
= 1 – exp(-PS/F ). For the case of our capillary-tissue model, it can be shown that the flux across 
the capillary wall may be defined as EF (C  – C ). EFp is otherwise known as K

p e

p e

p

p

p p e
trans and this new 

flux equation leads to the two limiting cases described by Tofts et al. [13]. When F  » PS (thus 
the plasma concentration is stable), EF  ≈ PS and the measured flux is related directly to 
permeability. Conversely, if PS » F  (E ≈ 1 and the plasma concentration of contrast agent is 
rapidly depleted) EF  ≈ F  and measured flux is related directly to flow. 

p

p

p

p p

3. Compartmental models 
The tracer kinetic models used in most MRI studies to date are essentially based upon a modified 
version of Kety’s original approach in which the plasma input function is convolved with the 
tissue impulse response derived above to arrive at an estimate of the whole tissue concentration 
of contrast agent (Ct(t)): 
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The techniques described in the early 1990s by both Larsson and Tofts follow this pattern [14, 
15]. Brix et al. used the same principles [16] and common to all three approaches is the 
calculation of the rate constant kep (= Ktrans/ve) [9]. The differences between these techniques are 
in the details of their individual measurement schemes. With baseline estimates of T1 and 
independent estimates of Cp(t), they broadly reduce to the same form [17]. All require dynamic 
imaging following the administration of contrast agent for a time period of a few minutes or 
more (until equilibrium between plasma and interstitial contrast agent concentrations is 
achieved). Absolute estimates of Ktrans can only be obtained when the dynamic imaging is 
accompanied by an estimate of baseline T1. 
 
What is conspicuously neglected in this model is the contribution to the signal from contrast 
agent in the vascular space, vp, of the tissue. This has long been recognized in PET studies [18] 
and explicitly modeled in the popular Patlak approach to data analysis [19]. However, to 
accurately model the effects of such a contribution it is important to know the concentration of 
contrast in the feeding arterial system. That is, an arterial input function (AIF) must be measured. 
A number of investigators have developed methods to achieve this in animals [20, 21] and 
humans [22, 23] and a simple extension of equation 1 allows its incorporation: 
 

 ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
+=

t

e
pppt dt

v
ttKtCKtCvtC

0

trans
trans ')'(exp)'()()(           (2) 

 
This has the added benefit of providing a subject-specific AIF rather than an assumed form [15] 
increasing the accuracy of parameter estimates (provided the AIF is accurately measured). This 
model spans the fields of PET, contrast-enhanced CT and MRI and represents a popular standard 
for tracer kinetic analysis. An interesting limiting case for this model occurs when contrast agent 
transport is largely one way (e.g. in the early phases of tissue enhancement). In this case, the 
interstitial volume is neglected and a simplified version of equation 2 may be derived [19]: 
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4. Distributed parameter models  
Compact and relatively straightforward to fit, equation 2 provides a useful tool for the 
hypothesis-driven analysis of contrast-enhanced data. However, it lacks an important 
characteristic, the isolation of flow as a separable parameter. Considerable confusion has arisen 
in recent years with some investigators describing their Ktrans values as measures of 
“permeability” and others as measures of “perfusion”. While these two examples represent 
limiting cases without a priori information such a designation is premature. There has 
subsequently been considerable interest in developing methods to isolate flow and PS-product. 
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This has taken on added significance in the last couple of years with the introduction of 
commercial software addressing this issue directly. For example, GE Healthcare provides 
software associated with its CT workstation products called CT Perfusion 2 and CT Perfusion 3. 
While it’s not clear exactly how the tracer kinetics modeling is undertaken (this is a commercial 
product), a distributed parameter model lies at its heart. Numerous clinical groups have started 
using this software and a number of papers have now appeared in the literature reporting flow 
and PS values obtained from dynamic contrast-enhanced CT acquisitions [24-27] and 
emphasizing some of the complications inherent in using such complex techniques [28-30].  
 
As with the compartmental models, distributed parameter models were pioneered very early [4, 
31, 2] and have been tested in PET [6], CT [32] and MRI studies [33-35]. Central to their 
foundation is the concept of a measurable tissue transit time. That is, the contrast agent takes a 
finite time to transit the vascular volume of the tissue (= vp/Fp) and we are able to measure this 
with our imaging system. Typically this transit time will be on the order of seconds and this 
places an increased strain on image acquisition requiring sampling intervals on the order of 1 or 
2 s. However, the transport of contrast agent to the tissue during this initial period is solely due to 
tissue flow (i.e. extravasation may or may not occur in this initial phase; this can’t be established 
until the tracer begins to appear in the venules) [36]. Thus the early phase of enhancement 
provides information about flow alone and this, combined with late phase Ktrans estimates, can be 
used via the Renkin-Crone relation to extract estimates of PS. When the transit time is on the 
order of a few seconds (such as in the normal brain), measurement precision is limited; very few 
data points can be acquired in this time. However, transit time may be significantly longer in 
other tissues. MRI studies of the prostate gland using a sampling interval of 2.3 s [35] have 
provided estimates of flow and PS with acceptable precision (coefficient of variation 19% and 
28%, respectively [unpublished data]). The transit time estimated in prostate tumors was ~ 20 s 
and this reflects the relatively low blood flow to these cancers combined with a large blood 
volume. While these distributed parameter models have yet to be fully validated in a clinical 
setting, the prostate results compare extremely well with the current gold standard, H2O-15 PET. 
In a study of 11 tumor-bearing prostates, Inaba used water PET to estimate a mean flow across a 
whole prostate gland region of 29 ml/min/100 ml [37]. The mean value in 9 normal prostates was 
16 ml/min/100 ml. The compares with MR estimates of blood flow made in regions of interest 
encompassing prostate tumor of 36 ml/min/100 ml and normal prostate peripheral zone of 13 
ml/min/100 ml. Allowing for the partial volume averaging of central gland inherent in the PET 
regions, these numbers are remarkably consistent. Furthermore, the same MR data provides 
estimates of blood volume, PS-product and interstitial volume. 
 
Of course, the additional complexity of the distributed parameter model makes data fitting a non-
trivial problem [38] and the more complex the model the more important it becomes for the 
investigator to interpret their results judiciously [33]. Nevertheless, these studies provide exciting 
new results and will surely prick the interest of the MR community in much the same way as 
their introduction into the broader CT community has shown. 

5. Limitations and sources of error 
There are a myriad of potential pitfalls in the acquisition of dynamic contrast-enhanced MRI data 
and I won’t attempt to cover these here other than to emphasize the importance of acquiring good 
quality, artifact-free data with an appropriate spatial, temporal and contrast resolution. A very 
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common mistake is to neglect the influence of blood hematrocrit and this must be incorporated to 
avoid systematic errors in parameter estimates (e.g. the investigator needs to be clear about 
whether they are quoting plasma or whole blood flow). Similarly, the density of the tissue 
examined is important if tracer kinetic parameters are quoted per unit mass of tissue [9]. Without 
discussing these issues further, it is worth emphasizing that considerable debate surrounds the 
issues of water exchange (whether T1 is really an appropriate measure of Gd-DTPA 
concentration) [39] and the relaxivity of Gd-DTPA in plasma and tissue [40]. 
 
When it comes to analyzing your data using a tracer kinetic model a number of issues should be 
considered. Is the model appropriate and not over-parameterized? Data from a slow enhancing 
multiple sclerosis lesion should not require the same level of model sophistication as a lung 
tumor. Conversely, the rim of a rapidly enhancing glioma may have a significant vascular 
component and estimates of Ktrans made using equation 1 may be inaccurate [38]. As noted 
above, data fitting is not a trivial problem even with the simplest model. Delay and dispersion of 
the AIF is common [41] and correlation between parameters and error in their estimates should 
all be considered [33].  

6. Summary 
Tracer kinetic models can play a major role in the characterization of tumors, help provide 
prognostic information and assess the progress of treatments. Importantly, they can be used to 
test hypotheses and provide specific physiological insight. These techniques have been used for 
many years in the PET and CT communities and a considerable body of literature is available to 
help expedite their introduction into a variety of MR applications. They are not without their 
limitations and the results must be interpreted with caution but as tools for the study of cancer 
and its treatment they are invaluable. 

Recommended Reading 
Book: 

A. Jackson, D.L. Buckley, G.J.M. Parker, Editors.  
Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Oncology 
Springer-Verlag – Medical Radiology Series (2005). 

 
Review articles: 

P.S. Tofts 
Modeling tracer kinetics in dynamic Gd-DTPA MR imaging 
J Magn Reson Imaging 7:91-101 (1997) 
 
A.M. Peters 
Fundamentals of tracer kinetics for radiologists 
Brit J Radiol 71:1116-1129 (1998) 
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